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Abstract

& Computational modeling is a useful tool for spelling out
hypotheses in cognitive neuroscience and testing their pre-
dictions in artificial systems. Here we describe a series of sim-
ulations involving neural networks that learned to perform
their task by self-organizing their internal connections. The
networks controlled artificial agents with an orienting eye and
an arm. Agents saw objects with various shapes and locations
and learned to press a key appropriate to their shape. The
results showed the following: (1) Despite being able to see the
entire visual scene without moving their eye, agents learned
to orient their eye toward a peripherally presented object.
(2) Neural networks whose hidden layers were previously
partitioned into units dedicated to eye orienting and units
dedicated to arm movements learned the identification task
faster and more accurately than did nonmodular networks. (3)

Nonetheless, even nonmodular networks developed a similar
functional segregation through self-organization of their
hidden layer. (4) After partial disconnection of the hidden
layer from the input layer, the lesioned agents continued to
respond accurately to single stimuli, wherever they occurred,
but on double simultaneous stimulation they oriented toward
and responded only to the right-sided stimulus, thus simulat-
ing extinction/neglect. These results stress the generality of the
advantages provided by orienting processes. Hard-wired
modularity, reminiscent of the distinct cortical visual streams
in the primate brain, provided further evolutionary advantages.
Finally, disconnection is likely to be a mechanism of primary
importance in the pathogenesis of neglect and extinction symp-
toms, consistent with recent evidence from animal studies and
brain-damaged patients. &

INTRODUCTION

Biological organisms live in an environment cluttered
with a multitude of objects. To behave in a coherent and
goal-driven way, organisms need to select stimuli appro-
priate to their goals, to quickly react to unexpected,
dangerous predators. On the other hand, because of
capacity limitations, they must be capable of ignoring
other, less important objects. Thus, objects in the world
compete for recruiting the organism’s attention, that is,
to be the focus of the organism’s subsequent behavior.
Neural attentional processes resolve the competition
(Desimone & Duncan, 1995), on the basis of the orga-
nisms’ goals and of the sensory properties of the objects,
by giving priority to some objects over others. In eco-
logical settings, agents usually orient toward important
stimuli by turning their gaze, head, and trunk toward
them (Sokolov, 1963). This is done in order to align the
stimulus with the part of the sensory surface with high-
est resolution (e.g., the retinal fovea). This allows fur-
ther perceptual processing of the detected stimulus, for
example, its classification as a useful or as a dangerous

object. Orienting movements are thus a typical form of
‘‘embodied’’ cognition (Ballard, Hayhoe, Pook, & Rao,
1997), that is, a process in which body movements are
necessary to the processing of information. Indeed, ori-
enting movements make possible an optimization of
processing resources, with a segregation of mechanisms
dedicated to simple detection from resources perform-
ing more complex identification tasks based on object
shape, color, and so forth.

Not surprisingly, damage to the neural mechanisms of
attention may result in severe disability. For example,
human patients with brain damage may become un-
able to process several stimuli when simultaneously pre-
sented (as in extinction and simultagnosia), or stimuli
arising in a region of space contralateral to the brain
lesion (spatial neglect). In these cases, a ‘‘wrong’’ object
(i.e., an object inappropriate to the current behavioral
task) may win the competition and capture the patient’s
attention. Thus, when patients with left unilateral ne-
glect are presented with bilateral objects, they compul-
sorily orient their gaze toward right-sided stimuli, as if
their gaze were ‘‘magnetically’’ captured by these stimuli
(Gainotti, D’Erme, & Bartolomeo, 1991); afterward, pa-
tients find it difficult to disengage their attention from
these stimuli in order to explore the left part of space
(Bartolomeo & Chokron, 2002; Losier & Klein, 2001;
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D’Erme, Robertson, Bartolomeo, Daniele, & Gainotti,
1992; Posner, Walker, Friedrich, & Rafal, 1984) so that
their space exploration may remain confined to a few
right-sided objects (Bartolomeo, Chokron, & Siéroff,
1999). Thus, unilateral neglect represents a typical case
of a deficit of ‘‘embodied’’ attention, in keeping with
proposals of shared mechanisms between movements of
gaze and shifts of spatial attention (Hafed & Clark, 2002;
Hoffman & Subramaniam, 1995; Rizzolatti, Riggio, &
Sheliga, 1994).

Understandably, the brain mechanisms of attention
and their impairments have evoked great interest in
cognitive neuroscience. The most direct methods to
explore these issues are neurophysiological studies in
animals and neuroimaging and lesion studies in humans
(see, e.g., Parasuraman, 1998). Computer simulations
can complement these methods by constraining hy-
potheses about the normal and disordered function
of attentional processes. Computational models force
experimenters to make explicit assumptions and hy-
potheses and to implement their details. The subse-
quent analysis of results can be conducted at a level of
detail that would be difficult to achieve in other domains
of cognitive neuroscience. The ecological or artificial
life approach adds further power to the connectionist
modeling by simulating not only the brain and the
nervous system, but also the body and the environment
of artificial organisms (Parisi, Cecconi, & Nolfi, 1990;
Langton, 1989). Here we simulated artificial agents with
an orienting eye and an arm. Agents saw different ob-
jects (smaller or larger) in various parts of their visual
field. In order to obtain fitness, agents had to identify
the object shape by pressing the appropriate key with
their arm (Figure 1). It is important to note that only

the correct identification of the target object (i.e., press-
ing the correct key) was rewarded with fitness. No par-
ticular strategy to achieve object identification, including
orienting movements, was encouraged by the fitness
function.

Two objects could be simultaneously presented in
different locations. In this case, the agents had to re-
spond to the identity of the larger object. The agents’
behavior was controlled by artificial neural networks
whose connection weights were initially random. The
best-performing agents reproduced, and their offspring
had a similar weight matrix except for 15% random mu-
tations. After several thousands generations, the agents
learned to perform their task. Thus, the neural net-
works self-organized their internal connections accord-
ing to the principles of Darwinian evolution (Mitchell,
1997).

METHODS

Each artificial agent had a two-segment arm, which it
could move by varying the angle between shoulder and
arm and the angle between arm and forearm. In front of
the agent was a display, divided into 6 � 2 cells, and five
keys (see Figure 1). There were four possible objects,
which differed in size and shape (Figure 2). On any given
trial, they could appear either one at a time or two at a
time (one large and one small). The display was divided
into a central portion, a left portion, and a right portion.
The single object or the two objects seen during a trial
could be located in any of the three portions of the
display, with no more than one object per portion. Thus,
there were 36 possible different configurations of the
display (Figure 3) plus a further condition with no object
presented.

The agent responded to each of the displays by
moving its arm in order to reach and press the ap-
propriate key. There were five keys with the spatial ar-
rangement described in Figure 1. Four of the five keys
corresponded to each of the four object identities, the
fifth (central) key was the response to an empty display.
For single object presentations, the agent had to press
the key corresponding to the object, whatever its posi-
tion on the display. For double presentations, the agent
had to press the key corresponding to the shape of the
larger object, whatever the position of the two objects.

Figure 1. The agent with the display and the five response keys.

The plus signs designate the five possible responses (objects A–D or

no object presented).

Figure 2. The four stimulus objects.
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When no target was presented, the central key had to
be pressed.

The agent’s behavior was controlled by a feedforward
multilayer artificial neural network using a logistic acti-
vation function:

aðiÞ ¼ 1

1 þ e�Neti
ð1Þ

where a(i) is the activation function of the unit i, and
Neti is the net input of the unit, calculated as follows:

Neti ¼
X

j

ojwij þ biasðiÞ ð2Þ

where oj is the output (activation) of the jth unit
connected to i, wij is the weight of the connection
between i and j, and bias(i) is the bias of the unit i.

The neural network was composed of 12 visual input
units encoding the current content of the retina (4 units
for the left portion of the retina, 4 units for the central
portion, and 4 units for the right portion). The four
objects were encoded by setting to 1 the input units
corresponding to the filled cells of Figure 2 and setting
the remaining units to 0. There were two additional

proprioceptive input units, which encoded the current
angle of the forearm with the shoulder and of the arm
with the forearm. The two angles were measured in
radians in the interval between 0 and 3.14; these values
became the activation levels of the two proprioceptive
units. The proprioceptive units informed the agent about
the current position of the arm, which could not be seen
by the visual units.

The network had three output units. One of these
encoded the movement of the agent’s single eye. Acti-
vation values between 0 and 0.3 produced a movement
to the left; values between 0.3 and 0.7 engendered no
movement; and values between 0.7 and 1 produced a
movement to the right. At the beginning of each epoch,
the eye was in the central position, where the visual field
of the eye (the back rectangle in Figures 1 and 4) exactly
matched the display. Therefore, in the central starting
position the agent could see the whole content of the
display. A movement of the eye to the left or to the right
produced a horizontal displacement of the visual field
corresponding to two cells; in this condition, the agent
was able to see only two thirds of the display (Figure 4).
In these cases, the visual input of the portion of the
retina outside the display was set to 0.

The remaining two output units coded for the move-
ments of the arm. Their continuous activation value was
mapped into the value of an angle that could vary from
�0.17 to +0.17 radians and that was algebraically added
to the current angle of the two arm segments. When the
agent decided to stop its arm, that is, when both arm
output units had an activation value between 0.45 and
0.55, the trial ended and the distance between the
‘‘hand’’ (the end of the arm) and the target key was
measured. In most situations, a single activation cycle was
insufficient to correctly reach the target key because the
two angles often varied more than the maximum value
permitted by the two output units. In these cases, the
agent learned to perform a sequence of micromovements
in order to reach the target key (see Di Ferdinando &
Parisi, 2004). The two proprioceptive input units were
directly connected to the two output units coding for arm
movements. In contrast, the visual input layer communi-
cated with the output layer through a layer of internal
(hidden) units. The characteristics of this internal layer
varied in different simulations.

The connection weights of the agent’s neural network
developed according to a genetic algorithm (Mitchell,
1997). A population of 100 agents competed for survival
and reproduction. Each agent had a genotype encoding
all the connection weights of the agent’s neural net-
work. Each gene, represented by a real number, coded
for each connection weight with a 1:1 mapping. At the
beginning of the evolutionary process (first generation),
each agent in the population was assigned random
genes, that is, random weights for the connections of
its neural network. Each agent was then tested for 20
trials. In each trial a random object was presented on the

Figure 3. The 36 configurations of the screen that could be seen by

the agent on any given trial (in addition, there was a case in which
no object appears).
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display, the eye looked centrally, and the initial position
of the arm was random. After each display presentation,
the agent could move its eye and its arm in order to
reach the target key. After 20 trials, a fitness value was
calculated for each agent in the population according to
the following formula:

Fitness ¼
ðnCorrect � nIncorrectÞ � k

P
i¼1

nTrials

Distance2
i

nTrials
ð3Þ

where k = 0.001, nCorrect = number of correct keypresses,
nIncorrect = number of incorrect keypresses (i.e., when
the agents reached a wrong key), Distancei = distance
in pixels between target key and final hand position for
the trial i, nTrials = number of trials (i.e., 20). A key was
considered reached when the distance between it and the
agent’s hand decreased below 10 pixels. If on a particular
trial this distance was greater than 100 pixels, or if the arm
did not stop after 60 steps, the distance in Equation 3 was
set to 100 pixels. At the end of each cycle, the 20 agents
with the highest fitness values were selected for asexual
reproduction, and they produced five copies of their geno-
type. Random genetic mutations occurred in the copy
process, with a rate of 15% of the total genome; a quantity
randomly selected in the interval between +1 and �1 was
added to the current value of the gene to be mutated. In
this way, a new generation of 20 � 5 = 100 individuals
was generated, and the process was repeated until satis-
factory performance was obtained. All the simulations
were replicated 10 times, with 10 different initial random
weight patterns.

SIMULATION 1: EMERGENCE OF
ORIENTING BEHAVIOR

Previous work using the artificial life approach showed
that artificial agents may develop orienting behavior in

an ecological setting (Bartolomeo, Pagliarini, & Parisi,
2002). In this study, the agents lived in an environ-
ment containing food and danger elements and re-
produced selectively based on the capacity of each
individual to eat food while avoiding danger. The results
of simulations showed that when plentiful computation-
al resources (many hidden units) were available for the
perceptual discrimination between food and danger,
peripheral vision was sufficient to trigger the appropri-
ate response (eat or fly). However, with fewer hidden
units the agents first oriented the central portion of
their visual field to the peripheral stimulus, and only as a
second step were they able to identify it. Thus, in this
case the central portion of the sensory surface became
a ‘‘fovea,’’ and the detection of a stimulus in periph-
eral vision triggered an orienting movement before the
agent could decide whether to eat or to avoid the ob-
ject. This result suggests that capacity limitations can be
solved by the emergence of attentional processes in the
form of bodily orienting. A potential ambiguity of this
interpretation, however, is that the central portion of
the sensory surface was also the agent’s ‘‘mouth,’’ the
anatomical part used to ‘‘eat’’ the stimuli. Thus, agents
might have found it advantageous to orient toward the
stimulus, because in the event that it was food, agents
needed just one further step to eat it. In the present
simulation, we tried to replicate these preliminary re-
sults within the entirely different setting described
above, in which there was no overlapping between sen-
sory surfaces (the retina) and structures used for re-
sponse (the arm). Crucially, moreover, in the present
setting there was no need for the agents to orient
toward a peripherally presented object, because at the
beginning of each cycle they could see the whole dis-
play, and orienting in itself was not rewarded with fit-
ness. If orienting emerges in the present setting, then
one can be more confident that there is a powerful evo-
lutionary pressure toward the development of this type
of behavior.

Figure 4. When the agent

moved the eye to the left (A)

or to the right (B), it could

see only two thirds of the
display (the straight lines

represent the outer limits of

the agent’s visual field).
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Results

In the first set of simulations, information from all re-
gions of the retina was set to arrive to all eight internal
units, which in turn were connected to both eye and
arm units (Figure 5).

Therefore, both the eye and the arm were controlled
at any given time by information arriving both from the
fovea and from the two peripheral regions of the retina.
Because at any given cycle the arm had enough in-
formation arriving from all regions of the retina to de-
cide which response button to reach, an eye-movement
strategy was not, in principle, necessary. Despite this,
orienting behavior did emerge. For laterally presented
objects, agents learned to perform the task by first ori-
enting their eye toward the stimulus. Only afterward
could they press the appropriate response key. When
two objects were presented at the same time, the agents
oriented toward the larger object, the one to which they
had to respond. Similar results were obtained in control
simulations with different mutation rates (8% or 10%) or
number of hidden units (2, 4, 10, 12, 16), thus attesting
to the robustness of the simulation. Within these bound-
ary conditions (i.e., up to 16 hidden units), the earlier
finding that orienting behavior depends on capacity limi-
tations (Bartolomeo et al., 2002) was not replicated.

For each replication of the simulation, we analyzed
the best individual of the last generation. In particular,
we calculated the percentage of time in which the agents
moved their eye toward the object to be recognized (i.e.,
the currently perceived object for single-object trials, or
the larger object for two-object trials). This behavior
might be considered as an analogue of foveation, but
with the caveat that the agents’ central retinal area did
not have a better definition with respect to the periph-
eral area, in contrast to a real fovea. Together with the
fact that, as mentioned previously, the agents can see
the whole display when the eye is in its initial, central
position, there seems no obvious requirement for fo-
veation behavior to emerge. Despite these considera-
tions, the 10 evolved individuals showed an orienting
behavior on 83% of the trials, on average (Table 1). The

results displayed in Table 1 were obtained by identifying
the 10 best individuals (one per seed) at the end of the
evolution and by showing to each of them all the 37
possible input patterns, with 5 random starting positions
of the arm, for a total of 185 trials.

Table 1 also shows that orienting improved accuracy
of performance. A linear regression model, plotting ac-
curacy versus orienting, accounted for 41% of the vari-
ance, F(1,9) = 5.63, p < .05. In particular, the four
agents that always foveated the target objects (% fovea-
tion = 100) were those always performing at ceiling
(100% correct responses).

Thus, these artificial agents spontaneously developed
an orienting strategy, using the peripheral area of the
eye’s visual field only to locate the position and the size of
the target object, and the central area1 to recognize its
identity afterward, thereby replicating the previous re-
sults obtained in an entirely different setting (Bartolomeo
et al., 2002). More importantly, in the present setting
agents received reinforcement (fitness) for identifying the
correct targets, but were not instructed nor encouraged
in any way to orient toward the targets; yet, they devel-
oped such a strategy.

Additional control simulations (not shown here) using
agents with fixed eye demonstrated that also fixed-eye
agents were able to eventually learn the same task.2

If both orienting and nonorienting solutions existed,
then why did the algorithm tend to discover orienting
solutions? The orienting solutions may have been easier
to find in the search of weight space. In addition, by
centering objects in the fovea, agents managed to solve
the spatial generalization problem: If objects can appear
at any position on the retina, the classification problem
is hard for a small network, particularly because the
input space is not linearly separable. However, if ob-
jects are centered so that they always appear at the
same location, the mapping between input and output
becomes much easier to obtain. Importantly, the pres-
ent agents managed to solve this perceptual problem
by using eye orienting, that is, a motor act. This may be
considered as a typical example of ‘‘embodied cogni-
tion,’’ where goal-directed behavior is controlled not
by building a detailed representation of the environ-
ment, but by using the external world as its own model
and exploring it according to the agents’ needs (Ballard
et al., 1997; Clark, 1997; O’Regan, 1992).

Emergence of Functional Specialization in the
Hidden Layer

What were the ‘‘anatomofunctional’’ correlates of the
agents’ ‘‘cognitive’’ acts of orienting and identifying?
The activation patterns of the eight internal units at
the end of the learning phase indicated that a functional
modularity had emerged.

Figure 6 shows the activation patterns for one of
the 10 best individuals at the end of the evolutionaryFigure 5. Network architecture for Simulation 1.
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process, in response to each of the 36 + 1 possible visual
inputs. The inputs can be sorted into three sets: 12 in-
puts in response to which the eye should not be moved
(central target), 12 inputs requiring leftward responses
(left-sided target), 12 inputs requiring rightward orient-
ing (right-sided target), plus the single trial in which the
display contains no objects. The activation patterns of
some internal units (e.g., Units 2 and 3 in Figure 6)
seemed to control the movements of the eye (i.e., co-
varied with the target position, the information used to
move the eye), whereas others (Units 5, 7, and 8) seemed
instead to control the movements of the arm (i.e., co-
varied with the content of the visual field’s central por-
tion, the information used to move the arm). To provide
a numerical control for this putative functional speciali-
zation, we analyzed the variability of hidden units’ net
inputs for foveal and for peripheral stimuli (the net in-
put of a hidden unit is the sum of the products of input
unit activation and the connection weights between in-
put and hidden units; see Methods). The prediction was
that a unit specialized for the identification of foveal
stimuli would show greater variability in terms of its net
input for foveal rather than for peripheral stimuli, al-
though there is no difference in terms of perceptual
properties between the two cases. We calculated the net
inputs’ SDs for the hidden units that, on inspection of
their activation pattern, appeared to be specialized for
target identification (e.g., Units 5, 7, and 8 in Figure 6).
The average SDs for the 10 seeds were as follows: foveal
stimuli, 7.160; left-sided stimuli, 5.594; right-sided stimuli,
5.109. A repeated measures analysis of variance indicated
that the locus of stimulus presentation yielded differ-
ent variability, F(2,18) = 10.363, p = .001. Post hoc tests
(Fisher’s protected least significant difference) showed
that foveal stimuli generated more variable net input
than peripheral stimuli (all ps < .004), but there was no
difference between left- and right-sided stimuli ( p > .31).
This analysis confirmed the hypothesis that these units
are specialized for target identification and, thus, that
a functional specialization emerged in the agents’ hid-
den layer, with units dedicated to peripheral processing/
object detection and units dedicated to foveal processing/
object identification.

The observed self-organization of the hidden layer is
reminiscent of analogous divisions of labor in the real
brain. For example, in recent years much emphasis has
been placed on the hypothesis that there are distinct
cortical streams of visual processing in the primate brain,
one concerned with object localization and the other
concerned with object identification (Milner & Goodale,
1995; Mishkin, Ungerleider, & Macko, 1983). Previous
computer simulations provided results relevant to this
issue. Using a supervised learning algorithm, Rueckl,
Cave, and Kosslyn (1989) trained neural networks to
classify and locate shapes. Networks were designed using
either a nonmodular architecture, with all the hidden
units projecting to all the output units, or a modularT
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architecture, with some hidden units projecting to the
output units codifying for stimulus shape and others pro-
jecting to the output units dedicated to stimulus location.
When enough computational resources were allowed,
modular networks achieved more efficient internal rep-
resentations than nonmodular networks. Our present
experimental setting seemed particularly suited to the
exploration of these issues because the present artificial
agents have to perform very different tasks when orient-
ing toward a stimulus, which only requires its localiza-
tion, or when identifying the stimulus in order to perform
the appropriate action. Thus, we examined whether an
analogous advantage for ‘‘hardwired’’ modularity would
spontaneously emerge in the present setting, which em-
ployed a genetic learning algorithm.

SIMULATION 2: HARDWIRED
MODULAR ARCHITECTURE

In a second set of simulations, we used a modular
network architecture to control the behavior of the

agents. The internal layer of units was split into two
different modules, one connected only to the single
output eye unit and used to move the eye, and the
other connected only to the two output arm units and
used to move the arm. Each module consisted of four
units. Whereas the eye module was connected to all the
three portions of the retina, the arm module was con-
nected only to the central portion. Thus, in order to
correctly respond to the target, the agents had to first
put the target object in the central portion of their visual
field and then move the arm toward the correct key.
The architecture is shown in Figure 7.

Results

Figure 8 shows the development of the ability to reach
the appropriate keys over 10,000 generations of the
genetic algorithm, for the best individual in each gener-
ation of the modular and of the nonmodular popula-
tions. Modular agents were faster in learning the task
and obtained higher fitness scores than nonmodular

Figure 6. Activation value of the eight hidden units in response to the 36 + 1 possible visual patterns, that is, the possible contents of the

eye’s visual field (L = left area of the eye’s visual field; C = central area; R = right area). The patterns are grouped in three sets based
on target position, plus the case in which no object was presented. Activation values are designed in grayscale (black = 0; white = 1).
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ones. The mean fitness obtained over 10,000 genera-
tions (as analyzed for each step of 50 generations) was
.84 for the modular networks and .69 for the nonmod-
ular ones, paired t(200) = 24.00, p = 8.48�61, two tailed.
Thus, hardwired modularity conferred a strong evolu-
tionary advantage to agents otherwise identical to their
nonmodular counterparts. Control simulation showed
that modular agents developed orienting strategies also
with different mutation rates (8% or 10%).

Discussion

The results of Simulations 1 and 2 demonstrated that if
an agent has the capacity to move its eye, it will exploit

this ability even if, in principle, the task could be solved
without eye movements. Because a genetic algorithm
was used for task learning, one can conclude that orient-
ing behavior provides a substantial evolutionary advan-
tage, at least in the present experimental setting (but see
also Bartolomeo et al., 2002). Moreover, using a simula-
tion setup similar to that used in the present work,
Calabretta, Di Ferdinando, and Parisi (2004) showed that
neural networks that develop orienting behavior are
better able to generalize to new patterns, in particular
to recognize objects in new positions.

Simulation 2 confirmed and extended the results of
Rueckl et al. (1989) on the superiority of a modular
architecture over a nonmodular one in tasks involving
‘‘what’’ and ‘‘where’’ processing abilities. Of note, in
Experiment 1 of Rueckl et al., modular networks were
actually slower in learning than nonmodular networks,
contrary to their hypothesis. Only allocating more hid-
den units to the ‘‘what’’ module (Experiment 2) resulted
in the hypothesized superiority of the modular network.
Thus, the present Simulation 2, thanks to the use of
an artificial life approach, provided a generalization of
the Rueckl et al. results.

In Simulation 1, at the beginning of each trial the
agent saw the entire display, and therefore it could re-
spond to the current input by pressing the appropri-
ate key without moving the eye, as also shown by the
control simulations in which fixed-eye agents were able
to learn the task (see Footnote 2). However, mobile-eye

Figure 8. Learning curves for modular (black line) and nonmodular (gray line) architectures.

Figure 7. ‘‘Modular’’ architecture for Simulation 2.
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agents developed a different, two-step strategy, based
on the emergence of a differentiation within the agent’s
retina. The central portion of the retina developed the
ability to process all the available visual information, like
a fovea, whereas the two peripheral portions could
extract only some of the information available, that is,
presence/absence, location, and size of a stimulus, but
not its shape/identity.3

To explore the principles according to which the
modular networks self-organized their hidden layer, we
analyzed the component units’ activation patterns in
response to each of the 36 + 1 possible visual inputs
(Figure 9). In modular networks, four internal units
controlled the movements of the eye and four units
controlled the movements of the arm. Notice that for
the eye there were only two possible actions (‘‘turn
right’’ or ‘‘turn left’’), encoded as a single input/output
cycle in the network’s eye output unit, whereas the arm
could move in five different ways (‘‘press button A,’’
‘‘press button B,’’ etc.), each of which was realized by
several consecutive movements of the arm, encoded as
a succession of input/output cycles in the arm output

units. Even in the case of the arm, however, for each
input there was a single activation pattern in the inter-
nal units, which remained constant for the entire length
of the action. Thus, a single hidden activation pattern
encoded for the entire action, although the single-
component movements could vary as a function of the
arm’s initial position and of the proprioceptive input
during the movement.

In the agent of Figure 9, during trials with centrally
presented objects where no eye movement was needed,
the four internal units dedicated to the eye movements
assumed a ‘‘no-saccade’’ activation pattern of approxi-
mately 1011. On these same trials, the four internal units
that controlled the arm showed four different activation
patterns (approximately 0111, 0100, 0101, and 1110) cor-
responding to the appropriate keypress responses. With
peripherally presented objects, there was no 1:1 corre-
spondence between object identity and activation pat-
tern of the arm-movement units. In this case, the agent
needed only to detect the presence and size of an object
in order to orient toward it.4 Only after this step was
performed could the agent identify the target object.

Figure 9. Analysis of the modular network’s internal units. See Figure 6 for abbreviations.
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Thus, the role of hidden units dedicated to arm move-
ment was to recognize the identity of the target object
only when the target object was in the central portion of
the visual field. With left-sided presentation of a large
object, or of a small object unaccompanied by other
competing stimuli, the eye moved leftward before the
agent chose the appropriate arm movement. On these
trials, the four orienting units showed an activation pat-
tern (0010, with the first unit being somewhat variable)
coding for leftward eye movement. As soon as the eye
had moved to the left, the input became identical to
the already examined situation with a centrally pre-
sented object, and the four arm-movement units dem-
onstrated the above-mentioned patterns encoding for
key reaching. When a large object or a small unaccom-
panied object was presented in the right portion of the
display, the appropriate rightward eye movement was
accomplished by the orienting units assuming the pat-
tern 0001. Again, as soon as the eye was moved to the
right, the agents reverted to the situation requiring no
eye movement. All the information needed to move the
arm was now available to the network, which responded
to the four activation patterns controlling the arm move-
ments by reaching toward the appropriate buttons. In
the single trial in which no object was presented, the
four units controlling the eye always assumed approxi-
mately the same no-saccade pattern (1011); the four
units controlling the arm showed a fifth activation pat-
tern (0110), which directed the arm to the appropriate
‘‘no object present’’ button. Thus, the hidden layer of
the networks reflected the ‘‘cognitive’’ computations
that the agents performed to solve their task.

LESIONING THE NETWORKS

Damaging neural network models can inspire and con-
strain theories of normal and disordered behavior in real
agents (see, e.g., Monaghan & Shillcock, 2004; Pouget &
Sejnowski, 2001; Mozer, Halligan, & Marshall, 1997;
Cohen, Romero, Farah, & Servan-Schreiber, 1994). To
investigate the patterns of performance of lesioned ar-
tificial agents evolved through a genetic algorithm, we
created different types of lesions in the modular net-
works, after completion of the learning phase. The main
goal of this study was to model orienting behavior and
its disorders, like extinction and spatial neglect. As a
consequence, all the lesions shared two common prop-
erties: They involved only the gaze-orienting module,
and they impaired the ability to orient toward the left
side. In the present study, we did not aim to provide
an account of the hemispheric asymmetry in neglect.
Therefore, the design of the present neural networks
was symmetrical, and mirror-symmetric lesions would
produce similar results on the opposite side (see Di
Ferdinando, Casarotti, Vallar, & Zorzi, 2005; Monaghan
& Shillcock, 2004).

Lesion 1: Deactivation of the Hidden Unit
Coding for Leftward Orienting

Lesions to neural networks can be implemented accord-
ing to different methods. In a first lesion experiment, we
lesioned the internal units of the neural network. To can-
cel any influence of a hidden unit on the agent’s behav-
ior, its output value was set to 0, whatever the input the
unit received. For each network, we identified the hid-
den unit responsible for leftward eye movements and le-
sioned it (see Figure 10). Then, we examined the lesioned
agent’s behavior in response to each possible input.

The resulting performance (Figure 11) was severely
impaired, especially when the target object was in the
left portion of the display. In cases where the lesioned
unit was also active when the target was in the central
part of the visual field, as in the network in Figure 9,
these centrally presented objects were also inadequately
processed. On the other hand, performance was normal
for right-sided objects. More importantly, there was no
difference in the performance for the cases in which
there was one single object on the display, as compared
to the cases where two competing objects were pre-
sented, independent of whether the competing object
was centrally presented (‘‘close competitors’’ in Figure 11)
or occurred at the rightmost position (‘‘far competi-
tors’’). Thus, the complete deactivation of the orienting
units simulated situations in which the very occurrence
of a stimulus goes undetected, such as visual field de-
fects, or some cases of profound left neglect, where pa-
tients’ behavior can simulate left hemianopia (Kooistra &
Heilman, 1989).

Lesion 2: Adding Noise to the
Network’s Connections

Typically, left neglect symptoms are elicited by the pres-
ence of competing stimuli on the nonneglected side (see,
e.g., Bartolomeo et al., 2004; Bartolomeo & Chokron,
2002; Mark, Kooistra, & Heilman, 1988). Patients may
compulsorily orient toward visual objects presented on

Figure 10. Lesion 1: Deactivating the single hidden unit responsible

for the movement of the eye toward the left.
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the right side as soon as they appear (D’Erme et al.,
1992; Gainotti et al., 1991). In cases in which there are
no objects on the ‘‘good’’ side, signs of left neglect
may simply disappear, to the point that patients can at-
tain normal or nearly normal performance (Bartolomeo
et al., 2004; Chokron, Colliot, & Bartolomeo, 2004).
This ‘‘extinction-like’’ behavior in neglect (see Posner
et al., 1984) was not captured by the deactivation of
the left-orienting hidden units of the present networks.
We speculated that a more gradual form of impair-
ment might simulate the effect of competition between
perceptual stimuli in neglect. To test this prediction,
a second set of lesion experiments was conducted in
which we added random noise between �20 and +20
to all the connections linking the left region of the
retina with the four units that controlled the movement
of the eye. All the other connections, from the fovea
and from the right region of the retina, were left intact
(Figure 12).

After this lesion, the agents’ performance was im-
paired not only when the target object was in the left

portion of the display, but also when it was in the central
or even in the right portion. When presented with left-
sided stimuli, the lesion had different effects on the
ability of agents to orient to left stimuli: In some cases,
agents did not orient toward a left target; in others, they
oriented to the left for central or right-sided targets
(Figure 13). This contrasts with the behavior of patients
with neglect or extinction. Moreover, as for the previous
type of lesion, there was no difference between the
outcomes of single and double presentations, which
was once again inconsistent with the behavior of most
patients with neglect and of all extinction patients.

Lesion 3: Decreasing the Strength of the
Network’s Connections

Intrahemispheric disconnection between anterior and
posterior regions of the right hemisphere may contrib-
ute to neglect symptoms, both in monkeys (Gaffan &
Hornak, 1997) and in humans (Doricchi & Tomaiuolo,
2003), for example, to the slowed processing of left-
sided stimuli as compared with right-sided, nonne-
glected stimuli (see Bartolomeo & Chokron, 1999). To
simulate disconnection, we reduced the weights of the
16 connections linking the four leftmost input units with
the four internal orienting units to one third of their
original value (Figure 14), thus decreasing their role in
determining the activation level of the orienting units.

Figure 15 shows the average performance of the 10
best individuals. Performance was impaired only for left-
sided target objects, whereas it was normal for central or
right-sided targets. More importantly, however, agents
failed to orient toward left-sided objects only in specific
conditions. Large objects were processed normally most
of the time (90%) when presented in isolation. Single,
small objects evoked less accurate performance (70%
correct). The presence of a competing object in the
central or in the right portion of the display further

Figure 11. Performance

of the agents in response to

stimuli presented in different

portions of the visual field,
either in isolation or

accompanied by other stimuli,

after lesion of the hidden unit
for leftward eye movements. In

unlesioned networks, accuracy

was at ceiling for all stimuli.

Figure 12. Lesion 2: Adding random noise to the network’s

connections from the left visual field to the eye-hidden module.
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decreased performance, which is the defining feature of
sensory extinction. Correct responses were 47% for large
left-sided objects presented with a small central object
(close competitors in Figure 15), but only 13% when the
competing small object was presented on the right side
(far competitors). Similar results were obtained with
10% mutation rate.

Single-case analysis revealed examples strongly rem-
iniscent of patients’ typical patterns of performance. For
example, one individual always looked toward and
responded correctly to a single, left-sided object, but
when the display contained two objects it invariably
responded to the object on the relative right, even if
that object was in the central position. Thus, a left-
sided object could be extinguished either by a right-
sided object or by a central one. More importantly, the

extinction-like behavior in neglect patients, that is the
slowing of response times for left-sided stimuli pre-
ceded by right-sided ones, also occurs when the pre-
ceding stimulus is central (Bartolomeo, Siéroff, Decaix,
& Chokron, 2001; D’Erme et al., 1992; Posner et al.,
1984), similar to the present results. Relative neglect is
easy to understand in the present simulations if one
considers that stimuli compete for selection as targets
of orienting movements. If the processing of left-sided
stimuli is impaired, but not nullified, by a lesion (e.g., by
the disconnection described here), then another stimu-
lus is more likely to win the competition independent of
its localization (right side or center). In a similar way, it is
common clinical experience that left neglect is typically
modulated by the objects’ salience, with less neglect
for more salient left-sided objects. In a further analogy
with the simulation results, right-sided, nonneglected
objects are often crucial to trigger neglect behavior
(Chokron et al., 2004; Mark et al., 1988). Importantly, non-
neglected objects need not be presented in the patient’s
right hemispace to cause left neglect; it is sufficient
for them to appear on the relative right of the target
(Bartolomeo et al., 2004; Driver & Pouget, 2000; Marshall
& Halligan, 1989). A similar point can be made for visual
extinction, where a left-sided stimulus can be extin-
guished by a competitor presented on its relative right
in the same (left) hemifield (Di Pellegrino & De Renzi,
1995).

SIMULATION 2B: ‘‘SMALL’’ OBJECTS
AS TARGETS

It might be argued that the observed effects of the
lesions simply depended on lowering input gains from

Figure 13. Performance of the

agents after Lesion 2.

Figure 14. Lesion 3: Decreasing the strength of the network’s

connection from the left visual field to the eye-hidden module.
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the left part of the retina, which would amount to
making objects in the left part of the retina smaller
(because the overall activation on the left is smaller);
this would obviously give advantage to rightward stimuli,
which would then become larger and, consequently, be
chosen by the agent as a target. To control for this
possibility, we performed an additional simulation with
similar settings, except that the small and not the large
objects were defined as targets. If the relative size of
the objects determines performance, then the lesioned
agents should now select the left-sided object, made
smaller by the lesion. The new task became more dif-
ficult for the agents to learn, which led us to use a
smaller mutation rate (8% rather than 15%) and a larger
number of generations (50,000 rather than 10,000). The
final accuracy was slightly inferior to that of the previous
simulations (Figure 16A). Despite this, the results of the
disconnection lesions were strikingly similar to the
previous results (Figure 16B). Performance was impaired
only for left-sided targets, whereas it remained normal
for central or right-sided targets. Moreover, as in the
original simulations the presence of a competing object
in the central or in the right portion of the display
produced a larger decrease in performance as compared
with cases in which objects were presented in isolation.
In particular, a more severe deficit was present with
a far competitor than with a central (close) competitor.
Thus, the results of this simulation run counter to the
possibility that the disconnection results merely de-
pended on making objects in the left part of the retina
smaller.

GENERAL DISCUSSION

The present study is among the first attempts to simu-
late orienting of attention and its disorders with ecolog-
ical neural networks (see also Bartolomeo et al., 2002),

that is, with artificial agents that live in a simulated
environment and that evolve following a genetic algo-
rithm. Other previous studies used supervised learning
algorithms or simulation settings in which most or all
the parameters were prespecified by the experimenter.
These studies were able to simulate several key aspects
of neglect behavior. Cohen et al. (1994) demonstrated
that the disproportionate slowing of response times for
contralesional targets after an ipsilesional cue in parietal
patients (Posner et al., 1984), usually interpreted as a
deficit of disengaging attention from the ipsilesional
position, could result from interactions between differ-
ent parts of the model, without the need to postulate a
module dedicated to disengagement. Mozer and his co-
workers lesioned a model of selective attention based on
local interactions between adjacent units (Mozer, 2002;
Mozer et al., 1997; Mozer & Behrmann, 1990). In this
model, an attentional layer selected the relevant parts of
input displayed on a retina and transmitted the selected
parts to further processing layers. Selection was biased
in a bottom-up manner, by the locations on the retina
where a stimulus was present, and in a top-down manner,
depending on the task demands. To simulate neglect,
Mozer et al. (1997) damaged the bottom-up connections
from the retina to the attentional layer, in a similar way to
Lesion 3 in the present study. The damage was graded
monotonically, most severe at the left extreme of the
retina and least severe at the right. The damaged net-
work simulated several neglect-related behaviors, such as
neglect dyslexia (Mozer & Behrmann, 1990), rightward
deviation in line bisection (Mozer et al., 1997), and object-
based neglect (Mozer, 2002). In a model using a basis
function to perform sensorimotor transformations, which
presents specific analogies with the functioning of parie-
tal neurons, Pouget and Sejnowski (1997, 2001) also
simulated neglect behavior occurring after a gradient-
shaped lesion. Anderson (1996, 1999) proposed a math-
ematical model of neglect in which a salience system

Figure 15. Performance of

the agents after Lesion 3.
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selects objects’ centers for the focus of an attentional
‘‘spotlight.’’ Damage to the right part (or ‘‘hemisphere’’)
of the salience system produced rightward deviation on
bisection of long lines, whereas damage to the right part
of the spotlight led to misreading of the left part of
words (‘‘neglect dyslexia’’). Monaghan and Shillcock
(2004) demonstrated that the fundamental asymmetry
of unilateral neglect (more left neglect after right brain
damage than the reverse), can result from low-level dif-
ferences between the hemispheres, such as the possibility
that left-hemisphere neurons have narrower receptive
fields than right-hemisphere neurons (see Halligan &
Marshall, 1994). In Monaghan and Shillcock’s setting, two-
hemisphere neural networks with analogous differences
in receptive fields, after unilateral damage, simulated
patients’ deviations on line bisection with the typical
left–right asymmetry. Di Ferdinando et al. (2005) re-
ported a series of neural network simulations that im-
plemented different theories of neglect to verify their
neuropsychological plausibility. The simulations, built
following the basis functions approach developed by
Pouget and Sejnowski, showed that asymmetries are best
explained by a right hemispheric dominance for spatial

representations expressed in terms of a higher number
of neurons involved in spatial tasks.

Our simulation work departed from these approaches.
We used neural networks embedded within a body and
an environment and trained by means of a genetic algo-
rithm. In this approach, the selection process and the
constant addition of new variability through random
genetic mutations result in modification of the neural
networks’ connection weights across generations. Our ap-
proach allowed us to simulate the emergence of visuo-
motor behavior (gaze orienting and perceptual object
identification), as well as the production of the appropri-
ate motor responses. More importantly, the simulated
agents learned these behaviors without direct supervision
from the experimenter. In contrast to what happens with
classical neural networks, the input and output patterns
of ecological networks are not interpreted arbitrarily
by the experimenters; instead, their ‘‘meaning’’ is deter-
mined by the interaction of the agent with its environ-
ment. Input patterns are the result of the action of the
environment on the sensory systems of the agents, and
output patterns modify the environment through the
motor systems of the agents. In other words, the next

Figure 16. ‘‘Smaller’’ objects

as targets. (A) Performance

of normal agents;

(B) performance of the
agents after Lesion 3.
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input of the agent is determined by its actions (e.g., if an
agent does not move its eye toward a certain area of the
environment, it may not perceive it), whereas in classical
simulations the experience of neural networks is prede-
termined (it corresponds to the ‘‘training set’’). Thus, the
experimenters state only the principles of the interaction
between the agents and the environment, but they have
no role in interpreting the results of this interaction. As
a consequence, ecological neural networks can move
and perform actions that change the environment or the
relationship between agents and environment, resulting
in new input patterns. Therefore, they at least partially
determine their own input (see Arbib, 1981, for analogies
with biological systems).

The present experimental setting addressed the issue
of modularity in the brain. Hardwired separation be-
tween hidden units dedicated to gaze orienting and
hidden units specialized in object recognition, similar
to the analogous functional specialization in the real
brain, gave to the agents a consistent advantage in terms
of speed of learning, thus confirming previous simula-
tion results obtained with supervised learning (Rueckl
et al., 1989) and genetic algorithms (Di Ferdinando et al.,
2001). By damaging the ‘‘brains’’ of the artificial agents
in specific ways, we observed patterns of impaired per-
formance that captured crucial aspects of human neu-
ropsychological conditions like neglect and extinction.
The resulting impairments may be described as deficits
of attention, in the sense of ‘‘biased competition’’
(Desimone & Duncan, 1995). After disconnection be-
tween the input and the hidden layers, lesioned agents
were unable to orient to left-sided objects, but only
when a competing right object was present. Thus,
competition between objects in different spatial posi-
tions was biased in the sense that right-sided objects
systematically won the race to recruit the agents’ atten-
tion. Similarly, human patients with extinction fail to
acknowledge the presence of a contralesional stimulus
only when a competing stimulus is administered at the
same time on the same side as their brain lesion.
Patients with left neglect show similar, if more severe,
patterns of performance (Bartolomeo et al., 2004) be-
cause their attention is compulsorily and, as it were,
‘‘magnetically’’ captured by ipsilesional stimuli (D’Erme
et al., 1992; Gainotti et al., 1991; De Renzi, Gentilini,
Faglioni, & Barbieri, 1989; Mark et al., 1988). More im-
portantly, we observed this ‘‘attentional’’ bias only after
a specific pattern of damage affecting the connections
between input and hidden units. Damage to the con-
nection weights was also found to yield neglect-related
behavior in previous simulation studies (Cohen et al.,
1994, Simulation 3; Mozer, 2002; Mozer et al., 1997).
The present lesioned agents did not simply suffer from
an attenuated ‘‘perceptual’’ representation of the ‘‘ne-
glected’’ input. They failed to orient toward it, despite
normal processing at the most peripheral ‘‘sensory’’
level of analysis, which took place in the intact input

units. Failure to orient to left-sided stimuli, probably re-
sulting from an asymmetry of exogenous orienting pro-
cesses (Corbetta & Shulman, 2002; Losier & Klein, 2001;
Mesulam, 1999), constitutes a crucial mechanism lead-
ing to neglect behavior (Bartolomeo & Chokron, 2002).
The present pattern of results supports previous sugges-
tions that problems of communication between brain
areas, for example, between parietal and frontal regions,
may contribute to unilateral neglect signs in animals
(Gaffan & Hornak, 1997) as well as in humans (Doricchi
& Tomaiuolo, 2003).

In a recent study partly inspired by the present simu-
lation results, Thiebaut de Schotten et al. (2005) used
direct electrical cerebral stimulation, which transitorily
inhibits the stimulated stricture, in human neurosurgi-
cal patients performing a line bisection task. Results
showed that rightward deviations of the subjective mid-
dle of the line (a typical sign of left neglect) occurred
upon stimulation of right-hemisphere cortical areas
whose lesion is commonly associated with neglect (the
supramarginal gyrus of the parietal lobe and the caudal
part of the superior temporal gyrus); more importantly,
however, the strongest deviations occurred with white
matter inactivation. Fiber tracking identified the in-
activated site as the likely human homologue of the
second branch of the superior longitudinal fasciculus, a
parietal–frontal pathway described in the monkey by
Schmahmann and Pandya (2006). A possibility consistent
with the present simulation results is that parietofrontal
disconnection results in an interaction between (1) de-
creased salience of contralesional stimuli (parietal com-
ponent) and (2) impairment of contralaterally directed
orienting movements (frontal component) (Bartolomeo,
2006). More generally, disconnections are likely to dis-
rupt the integrated activity of several remote brain areas
required for the emergence of conscious stimulus pro-
cessing (Dehaene & Naccache, 2001). The present re-
sults indicate that simulation approaches with explicit
consideration of bodily movements can offer new per-
spectives on the cognitive neurosciences of attention
and its disorders.
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Notes

1. The central sector of the simulated retina might have
emerged as a fovea because it was the only one that,
independent of lateral gaze shifts, was always in line with a
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sector of the simulated space. However, we note that central
foveae are the rule in natural settings, presumably because
they do not entail any directional bias in foveation movements.
Therefore, we believe that the emergence of a central fovea in
our simulations is consistent with real settings.
2. We ran a set of simulations using the same network
architecture as in Figure 5, in which the eye output was
ignored, and with the same parameters (mutation rate,
number of generations, etc.) used in Simulation 1. In all the
seeds, the agents succeeded in solving the task.
3. One might wonder whether orienting movements led to
the development of the fovea or vice versa. This seems to be a
typical chicken-and-egg problem. In natural settings, coevolu-
tion of different but interacting characteristics is frequently
observed, and it is often hard to say which one comes first (see,
e.g., the parallel evolution of particular species of fig trees and
of their ‘‘private’’ species of wasps described in Dawkins,
1996).
4. Some displays were associated with both an eye and an
arm movement. However, the pattern of activation in the arm
units did not necessarily produce a key press, but only a
movement toward a particular key. Thus, if on subsequent
iterations there was an eye movement, then the arm activation
pattern changed and the foveated object became the target of
the arm movement. Thus, for example, the display with B on
the left and C in the middle in Figure 9 initially evoked a
movement toward C, but on subsequent iterations, B was
foveated and the pattern of activation of the arm units changed
to induce a reaching of the B key.
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instead of inhibition for repeated right-sided events in left
neglect. NeuroReport, 10, 3353–3357.

Bartolomeo, P., Pagliarini, L., & Parisi, D. (2002). Emergence
of orienting behavior in ecological neural networks. Neural
Processing Letters, 15, 69–76.
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